In the format provided by the authors and unedited.

Within-group synchronization in the prefrontal cortex associates with intergroup conflict

Jiaxin Yang¹, Hejing Zhang¹, Jun Ni¹, Carsten K. W. De Dreu^{12,3} and Yina Ma¹²

¹State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China. ²Institute of Psychology, Leiden University, Leiden, The Netherlands. ³Center for Research in Experimental Economics and Political Decision Making, University of Amsterdam, Amsterdam, The Netherlands. SMe-mail: yma@bnu.edu.cn

Supplementary Figure 1 | Illustration of fNIRS Optode Position.

We used two identical 3×2 optode probe sets, with each probe set (inter-optode distance of 30 mm) consisting of 3 light emitters (red) and 3 detectors (blue), and 7 channels. Each probe set was separately placed on the right temporo-parietal junction (rTPJ) or the right dorsolateral prefrontal cortex (rDLPFC) according to the relevant standard positions of P6 and F4 in the international 10-10 system for electroencephalogram electrode placement¹⁻⁴.

References:

- 1. Koessler, L. et al. Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. *Neuroimage* **46**, 64-72 (2009).
- 2. Luck, S. J. An introduction to the event-related potential technique (MIT press, 2014).
- 3. Tang, H. et al. Interpersonal brain synchronization in the right temporo-parietal junction during face-to-face economic exchange. *Soc. Cogn. Affect. Neurosci.* **11**, 23-32 (2015).
- 4. Lu, K., Xue, H., Nozawa, T. & Hao, N. Cooperation makes a group be more creative. *Cereb. Cortex* **22**, 1-14 (2018).

a F-map: Bonding × Role

Channels were significant but not survived

Supplementary Figure 2 | GNS and group-averaged activity based on the deoxygenated hemoglobin (Deoxy-Hb) signal.

We similarly applied the wavelet-based global noise removal technique to Deoxy-Hb time series and performed Wavelet Transform Coherence analysis to calculate the GNS of Deoxy-Hb signal for each three-person group. **a**, The F-map of the Bonding × Role interaction on GNS. We found a similar Bonding × Role interaction effect at channels 3 and 9 of rTPJ (channel 3: $F_{1,84} = 6.777$, p = 0.011, $\eta^2 = 0.075$; channel 9: $F_{1,84} = 6.999$, $p = 9.73 \times 10^{-3}$, $\eta^2 = 0.077$) but did not survive from FDR-correction for 14 channels. **b**, Regarding the GNS for channels 8, 11, 4, and 13, although the pattern at channel 8 was similar to that observed in Oxy-Hb analysis, there were no significant Bonding × Role interaction ($F_{1,84} = 0.006$, p = 0.938, $\eta^2 = 7.14 \times 10^{-5}$). Mixed-model ANOVAs, n = 86 three-versus-three-person intergroup contest sessions. Data are plotted as boxplots for each condition in which horizontal lines indicate median values, boxes indicate 25/75% quartiles, and whiskers indicate the 2.5-97.5% percentile range. Data points outside the range are shown separately as circles. Solid lines start from the mean and reflect the intervals for the Mean \pm S.E. * p < 0.05, ** p < 0.01. *n.s.* not significant.

a F-map: Main effect of Gender

Supplementary Figure 3 | Gender Effect.

All sessions were classified as all-male sessions (n = 38 six-person sessions) and all-female sessions (n = 48 six-person sessions). To examine whether session gender influenced the neural response (including GNS, within-group averaged neural activity and group-averaged functional connectivity), we included Session gender (all-male vs. all-female sessions) as a between-session factor. a, Session gender produced a main effect showing stronger GNS in the rDLPFC (*ps* < 0.05, FDR correction, channel 6: $F_{1,82} = 11.085$, $p = 1.31 \times 10^{-3}$, $\eta^2 = 0.119$; channel 8: $F_{1, 82} = 8.698$, p = 0.004, $\eta^2 = 0.096$) and rTPJ (channel 13: $F_{1, 82} = 7.142$, p =0.009, $\eta^2 = 0.080$) in all-female sessions than all-male sessions, but Session gender did not interact with Bonding or Role (ps > 0.05, Supplementary Table 10a provides the full statistical report of each channel). b, c, There was no effect of Session gender on within-group averaged neural activity ($F_{1, 82} = 2.815$, p = 0.097, $\eta^2 = 0.033$) nor group-averaged functional connectivity ($F_{1,82} = 1.169$, p = 0.283, $\eta^2 = 0.014$, Supplementary Table 10c provides the full statistical report of each channel pair). Mixed-model ANOVAs on 86 three-versus-three-person intergroup contest sessions. Data are plotted as boxplots for each condition in which horizontal lines indicate median values, boxes indicate 25/75% quartiles, and whiskers indicate the 2.5-97.5% percentile range. Data points outside the range are shown separately as circles. Solid lines start from the mean and reflect the intervals for the Mean \pm S.E. ** p < 0.01, *n.s.* not significant.

Supplementary Figure 4 | Stronger Bonding effect on group-level rDLPFC activity in real than pseudo groups.

a, We conducted Role (attacker vs. defender) × Bonding (in-group bonding vs. no-bonding control) × Group (real vs. pseudo groups) ANOVA on the group-level neural activity (GNA) in rDLPFC (i.e. channel 8), 86 six-person real groups and 86 six-person pseudo groups. We found significant interactions of Bonding and Group when comparing real groups with pseudo groups ($F_{1,168} = 4.053$, p = 0.046, $\eta^2 = 0.024$). The reduced rDLPFC activity following in-group bonding (vs. non-bonding control) was only observed in the real group $(F_{1,84} = 4.034, p = 0.048, \eta^2 = 0.046)$, but not the pseudo group $(F_{1,84} = 1.108, p = 0.296, \eta^2 = 0.046)$ 0.013). Mixed-model ANOVAs, 86 six-person groups, respectively for real and pseudo groups. Data are plotted as boxplots for each condition in which horizontal lines indicate median values, boxes indicate 25/75% quartiles, and whiskers indicate the 2.5-97.5% percentile range. Data points outside the range are shown separately as circles. Solid lines start from the mean and reflect the intervals for the Mean \pm S.E. * p < 0.05, n.s. not significant. **b**, One-sided permutation test was used to verify the stronger Bonding effect on group-level rDLPFC activity in real than pseudo groups. We compared the real-group sample with 1000 pseudo-group samples¹⁻⁴. We tested the ingroup-bonding-decreased group-level nerual activity in the rDLPFC (GNA_{ingroup-bonding} – GNA_{no-bonding}) of the real-group sample against permutation samples based on the mean differences of rDLPFC activity between in-group bonding and no-bonding control (n = 1000, each permutation sample contains 172 within-condition three-person pseudo groups). We showed that the observed ingroup-bonding-decreased group-level rDLPFC activity in the real groups was outside the lower limit of 95% CI of the permutation distribution.

References:

- 1. Jiang, J. et al. Leader emergence through interpersonal neural synchronization. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 4274-4279 (2015).
- 2. Dai, B. et al. Neural mechanisms for selectively tuning into the target speaker in a naturalistic noisy situation. *Nature Comm.* **9**, 2405-2416 (2018).
- 3. Bilek, E. et al. Information flow between interacting human brains: Identification, validation, and relationship to social expertise. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 5207-5212 (2015).
- 4. Bilek, E. et al. State-dependent cross-brain information flow in borderline personality disorder. *JAMA psychiatry* **74**, 949-957 (2017).

Supplementary Figure 5 | Stronger Bonding effect on group-level rDLPFC-rTPJ connectivity in real than pseudo groups.

a, **b**, We conducted Bonding (in-group bonding vs. no-bonding control) \times Role (attacker vs. defender) ANOVAs (n = 86 three-versus-three-person intergroup contest sessions) on the grand-mean rDLPFC-rTPJ functional connectivity (a) and channel-pairwise rDLPFC-rTPJ functional connectivity in the real groups (b). We found that the increased group-level functional connectivity (GFC) following in-group bonding (vs. non-bonding control) in both grand mean rDLPFC-rTPJ connectivity (**a**, $F_{1,84} = 9.047$, p = 0.003, $\eta^2 = 0.097$), and channel-pairwise rDLPFC-rTPJ connectivity (**b**, CH5-CH7: $F_{1,84} = 9.126$, p = 0.003, $\eta^2 =$ 0.098; CH11-CH9: $F_{1,84} = 8.952$, p = 0.004, $\eta^2 = 0.096$; CH12-CH9: $F_{1,84} = 8.783$, p = 0.004, $\eta^2 = 0.095$; CH14-CH9: $F_{1,84} = 11.320$, $p = 1.16 \times 10^{-3}$, $\eta^2 = 0.119$; survived from FDR correction for 49 channel-pairs). c, d, We conducted Bonding (in-group bonding vs. no-bonding control) \times Role (attacker vs. defender) \times Group (real vs. pseudo groups) ANOVAs on the group-level rDLPFC-rTPJ functional connectivity (86 six-person real groups and 86 six-person pseudo groups). We found significant interactions of Bonding and Group when comparing real groups with pseudo groups (c, grand mean level: $F_{1.168} = 4.406$, p = 0.037, $\eta^2 = 0.026$; d, channel-pairwise level: CH5-CH7: $F_{1,168} = 5.871$, p = 0.016, $\eta^2 = 0.016$ 0.034; CH11-CH9: $F_{1,168} = 4.429$, p = 0.037, $\eta^2 = 0.026$; CH12-CH9: $F_{1,168} = 6.892$, p = 0.0370.009, $\eta^2 = 0.039$; CH14-CH9: $F_{1,168} = 7.398$, p = 0.007, $\eta^2 = 0.042$; survived FDR correction for the 4 testing channel-pairs). The increased rDLPFC-rTPJ functional connectivity following in-group bonding (vs. non-bonding control) was only observed in real groups (a-d), but not pseudo groups (c, grand mean level: $F_{1,84} = 0.224$, p = 0.638, $\eta^2 = 0.003$; d,

channel-pairwise level: CH5-CH7: $F_{1,84} = 0.169$, p = 0.682, $\eta^2 = 0.002$; CH11-CH9: $F_{1,84} =$ 0.094, p = 0.759, $\eta^2 = 0.001$; CH12-CH9: $F_{1,84} = 0.534$, p = 0.467, $\eta^2 = 0.006$; CH14-CH9: $F_{1,84} = 0.088$, p = 0.767, $\eta^2 = 0.001$). Mixed-model ANOVAs, 86 three-versus-three-person intergroup contest sessions for pseudo groups. Data are plotted as boxplots for each condition in which horizontal lines indicate median values, boxes indicate 25/75% quartiles, and whiskers indicate the 2.5-97.5% percentile range. Data points outside the range are shown separately as circles. Solid lines start from the mean and reflect the intervals of Mean \pm S.E. * p < 0.05, ** p < 0.01. e, f, We compared the Bonding effect on rDLPFC-rTPJ connectivity between real and pseudo groups using one-sided permutation test. Specifically, for both grand mean GFC and channel-pairwise GFC, we compared the real-group sample with 1000 pseudo-group samples¹⁻⁴. We tested the ingroup-bonding-increased rDLPFC-rTPJ functional connectivity (GFC_{ingroup-bonding} - GFC_{no-bonding}) of the real-group sample against permutation samples based on the mean differences of GFC between in-group bonding and no-bonding control in pseudo-group samples (n = 1000, each permutation sample contains 172 within-condition three-person pseudo groups). We showed that the observed ingroup-bonding-increased rDLPFC-rTPJ connectivity in real groups were outside the upper limit of 95% CI of the permutation distribution (at channel-pairs: CH5 - CH7; CH12 - CH9: *p* = 0.005; and CH14 - CH9).

References:

- 1. Jiang, J. et al. Leader emergence through interpersonal neural synchronization. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 4274-4279 (2015).
- 2. Dai, B. et al. Neural mechanisms for selectively tuning into the target speaker in a naturalistic noisy situation. *Nature Comm.* **9**, 2405-2416 (2018).
- 3. Bilek, E. et al. Information flow between interacting human brains: Identification, validation, and relationship to social expertise. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 5207-5212 (2015).
- 4. Bilek, E. et al. State-dependent cross-brain information flow in borderline personality disorder. *JAMA psychiatry* **74**, 949-957 (2017).

Supplementary Table 1 | Matched demographic and psychological information among four conditions.

a, Behavioral data analysis sample (n = 91 intergroup contest sessions)

	No-bondi	No-bonding control		Ingroup-bonding		Role	Interaction
Measurement	Attacker	Defender	Attacker	Defender	Domaing	noie	menuetion
	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	р	р	р
• Demographic information							
Number of sessions (<i>n</i>)	44	44	47	47	-	-	-
Session gender (n_{male} vs. n_{female})	18 vs. 26	18 vs. 26	22 vs. 25	22 vs. 25	-	-	-
Age (year)	21.94 (0.26)	21.07 (0.21)	22.04 (0.25)	22.47 (0.24)	0.12	0.64	0.11
Education year	16.67 (0.18)	16.67 (0.12)	16.77 (0.16)	17.16 (0.17)	0.08	0.20	0.22
• Psychological information							
Empathic capacity	2.40 (0.03)	2.33 (0.03)	2.35 (0.03)	2.39 (0.03)	0.89	0.75	0.08
Cooperative personality	3.77 (0.04)	3.82 (0.03)	3.84 (0.05)	3.86 (0.05)	0.17	0.46	0.66
Social value orientation	25.11 (1.08)	26.18 (1.22)	25.55 (1.10)	26.88 (1.19)	0.60	0.33	0.92
Prosocial personality	3.18 (0.03)	3.16 (0.04)	3.17 (0.04)	3.21 (0.04)	0.70	0.84	0.33
Impulsiveness	3.12 (0.03)	3.12 (0.03)	3.13 (0.03)	3.10 (0.03)	0.84	0.56	0.63
Justice sensitivity	2.78 (0.07)	2.78 (0.05)	2.70 (0.06)	2.75 (0.05)	0.41	0.64	0.69
Preference for social hierarchy	3.30 (0.06)	3.40 (0.07)	3.43 (0.07)	3.32 (0.07)	0.67	0.97	0.09
Intergroup discrimination (iDG0)	6.02 (0.58)	6.60 (0.60)	7.28 (0.74)	7.23 (0.58)	0.14	0.67	0.62

b, fNIRS analysis sample (n = 86 sessions)

Measurement	No-bond	No-bonding control		Ingroup-bonding		Role	Interaction
Wedditement	Attacker	Defender	Attacker	Defender	Domaning	Role	interaction
	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	р	р	р
• Demographic information							
Number of sessions (<i>n</i>)	43	43	43	43	-	-	-
Session gender (n_{male} vs. n_{female})	18 vs. 25	18 vs. 25	20 vs. 23	20 vs. 23	-	-	-
Age (year)	21.86 (0.25)	21.70 (0.21)	22.03 (0.26)	22.46 (0.26)	0.09	0.54	0.17
Education year	16.61 (0.18)	16.67 (0.12)	16.77 (0.17)	17.12 (0.18)	0.07	0.19	0.34
• Psychological information							
Empathic capacity	2.40 (0.03)	2.33 (0.03)	2.34 (0.03)	2.39 (0.03)	0.97	0.61	0.06
Cooperative personality	3.77 (0.04)	3.82 (0.03)	3.84 (0.05)	3.87 (0.05)	0.18	0.40	0.76
Social value orientation	25.11 (1.10)	26.34 (1.23)	25.46 (1.18)	26.56 (1.27)	0.80	0.36	0.96
Prosocial personality	3.19 (0.04)	3.16 (0.04)	3.13 (0.04)	3.20 (0.04)	0.86	0.49	0.18
Impulsiveness	3.12 (0.03)	3.12 (0.03)	3.13 (0.03)	3.09 (0.03)	0.67	0.57	0.44
Justice sensitivity	2.78 (0.07)	2.78 (0.05)	2.71 (0.06)	2.77 (0.05)	0.49	0.62	0.61
Preference for social hierarchy	3.31 (0.06)	3.39 (0.07)	3.47 (0.07)	3.32 (0.07)	0.55	0.62	0.09
Intergroup discrimination (iDG0)	6.07 (0.59)	6.55 (0.61)	7.26 (0.79)	7.05 (0.61)	0.20	0.83	0.60

Note: We conducted 2 (Bonding: in-group bonding vs. no-bonding control) \times 2 (Role: attacker 1 2 vs. defender) mixed-model ANOVAs (n = 91 three-versus-three-person intergroup contest sessions for **a** and n = 86 three-versus-three-person contest sessions for **b**) on the demographic 3 4 information and social-related traits. Empathic capacity was measured using the Interpersonal Reactivity Index¹, which consists of 28 items on a 5-point (0-4) Likert scale (higher scores 5 reflecting more empathic of an individual). Cooperative personality was measured by the 6 cooperative subscale of the Cooperation and Competition Personality scale² (13 items on a 7 8 5-point (1-5) Likert scale). Social value orientation was measured by the 6 primary items of the Social Value Orientation Slider task³. Prosocial personality was measured by the Social 9 Responsibility, Other-Oriented Moral Reasoning, and Mutual Concerns Moral Reasoning 10 subscales of Prosocial Personality Battery⁴, which consists of 13 items on a 5-point (1-5) Likert 11 scale (higher values reflecting more prosocial of an individual). Impulsiveness was measured 12 using BAS subscale of the Behavioral Inhibition/Behavioral Activation Scales, BIS/BAS⁵, which 13 consists of 13 items on 4-point (1-4) Likert scale (higher values reflecting more appetitive 14 motives). Justice sensitivity was measured using Justice Sensitivity Inventory⁶, which consists of 15 40 items on 6-point (0-5) Likert scale (higher values reflecting more sensitive to justice). 16 Individual's preference for social hierarchy was measured using Social Dominance Orientation 17 (SDO) scale⁷, which consists of 16 items on 7-point (1-7) Likert scale (higher values reflecting 18 stronger preference for inequality among social groups). The individual's baseline intergroup 19 discrimination was indexed by the intergroup bias in the intergroup Dictator Game (iDG0: split 20 20 monetary units between in-group and out-group members). 21

- 22
- 23 References:
- Davis, M. H. Measuring individual differences in empathy: Evidence for a multidimensional approach. J. Pers. Soc. Psychol. 44, 113-126 (1983).
- Xie, X., Yu, Y., Chen, X. & Chen, X. P. The Measurement of Cooperative and Competitive Personality. *Acta. Psychologica. Sinica.* 38, 116-125 (2006).
- Murphy, R. O., Ackermann, K. A. & Handgraaf, M. Measuring social value orientation.
 Judgm. Decis. Mak. 6, 771-781 (2011).
- Penner, L. A. Dispositional and organizational influences on sustained volunteerism: An
 interactionist perspective. J. Soc. Issues 58, 447-467 (2002).
- S. Carver, C. S. & White, T. L. Behavioral inhibition, behavioral activation, and affective
 responses to impending reward and punishment: the BIS/BAS scales. *J. Pers. Soc. Psychol.* 67, 319-333 (1994).
- Schmitt, M., Baumert, A., Gollwitzer, M. & Maes, J. The justice sensitivity inventory:
 Factorial validity, location in the personality facet space, demographic pattern, and
 normative data. *Soc. Justice Res.* 23, 211-238 (2010).
- 38 7. Sidanius, J., Levin, S., Liu, J. & Pratto, F. Social dominance orientation,
- anti-egalitarianism and the political psychology of gender: an extension and cross-cultural
 replication. *Eur. J. Soc. Psychol.* **30**, 41-67 (2000).

		Initial	Individual	Group's pool C	Payoff		
Group	Role	endowment	contribution	(0 < C < 60)	Attackers lose	Attackers win	
		(MU)	(x_i / y_i)	$(0 \leq C \leq 00)$	$C_A \leq C_D$	$C_A > C_D$	
	Attacker ₁	20	<i>x</i> ₁		$20 - x_1$	$20 - x_1 + (60 - C_D)/3$	
Attacker group	Attacker ₂	20	<i>x</i> ₂	$C_A = (x_1 + x_2 + x_3)$	$20 - x_2$	$20 - x_2 + (60 - C_D)/3$	
	Attacker ₃	20	<i>x</i> ₃		$20 - x_3$	$20 - x_3 + (60 - C_D)/3$	
	Defender ₁	20	y_1		$20 - y_1$	0	
Defender group	Defender ₂	20	<i>y</i> ₂	$C_D = (y_1 + y_2 + y_3)$	$20 - y_2$	0	
	Defender ₃	20	<i>y</i> ₃		$20 - y_3$	0	

41 Supplementary Table 2 | Payoff matrix of one-round intergroup contest game.

Note: For each intergroup contest round, each individual received an initial endowment of 20 Monetary Units (MUs). Members of attacker (defender) group could each contribute x(y) out of 20 MUs. Each individual decided the amount (x_i for attacker group, and y_i for defender group, $0 \le x_i \le 20$, $0 \le y_i \le 20$) to the group's pool C ($0 \le C \le 60$, $C_A = [x_1 + x_2 + x_3]$, $C_D = [y_1 + y_2 + y_3]$). When $C_A \le C_D$, defender group would survive attacker group's attack and the members of both groups would earn what remained from their endowment (i.e., $20 - \{x, y\}$). When $C_A > C_D$, defender group failed and left with 0. Attacker group won and took away defender group's remaining MU ($60 - C_D$), which were divided equally among members of attacker group (each member: $[(60 - C_D)/3]$) and added to their promotions of determined for x_i .

48 added to their remaining endowments $(20 - x_i)$.

49 Supplementary Table 3 | Full statistical reports for behavioral indices in the intergroup

50 contest game.

Behavioral		No-bonding c	ontrol $(n = 44)$	Ingroup-bonding $(n = 47)$		
indices		Attacker	Defender	Attacker	Defender	
Contribution	Mean \pm SE	5.77 ± 0.47	8.50 ± 0.41	6.90 ± 0.63	10.13 ± 0.43	
001111041101	95% CI	4.83 - 6.71	7.68 - 9.32	5.63 - 8.17	9.26 - 11.00	
Within-group	Mean \pm SE	0.19 ± 0.04	0.55 ± 0.05	0.34 ± 0.04	0.64 ± 0.05	
coordination	95% CI	0.11 - 0.27	0.45 - 0.65	0.25 - 0.43	0.53 - 0.75	
Intergroup discrimination	Mean \pm SE	4.82 ± 0.69	8.41 ± 0.77	9.81 ± 0.61	11.23 ± 0.66	
(iDG)	95% CI	3.43 - 6.20	6.85 - 9.97	8.58 - 11.04	9.90 - 12.55	
Intergroup discrimination	Mean \pm SE	0.52 ± 0.23	1.62 ± 0.23	1.55 ± 0.18	2.00 ± 0.22	
(Likability)	95% CI	0.07 - 0.98	1.16 - 2.08	1.18 - 1.92	1.56 - 2.44	

51 a, Descriptive statistics in each condition (n = 91 intergroup contest sessions)

52 b, Results of Bonding × Role mixed-model ANOVAs (*n* = 91 sessions)

Behavioral indices	Effect	F	р	η^2
	Bonding	4.133	0.045*	0.044
Contribution	Role	279.194	3.48×10 ⁻²⁹ ***	0.758
	Bonding \times Role	1.937	0.167	0.021
Within-group	Bonding	4.517	0.036*	0.048
decision	Role	81.249	3.52×10 ⁻¹⁴ ***	0.477
coordination	Bonding \times Role	0.510	0.477	0.006
Intergroup	Bonding	32.786	1.37×10 ⁻⁷ ***	0.269
discrimination	Role	13.469	4.13×10 ⁻⁴ ***	0.131

(iDG)	Bonding × Role	2.530	0.115	0.028
Intergroup	Bonding	12.625	6.11×10 ⁻⁴ ***	0.124
discrimination	Role	11.386	1.10×10 ⁻³ **	0.113
(Likability)	Bonding \times Role	2.025	0.158	0.022

53

54 Note: Contribution was calculated by the averaging contributions within 3-person group and across 24 rounds (range: 0-20 monetary units). Within-group decision coordination was calculated 55 by correlating the 24-round contributions of each pair of two participants within each 3-person 56 group (resulting in 3 correlations per group) and averaging the 3 Fisher z-transformed correlation 57 coefficients. Higher value indicates higher coordination in round-level contributions among the 58 group members. The intergroup discrimination in the intergroup Dictator Game (iDG) was 59 calculated by subtracting donations to out-group members from those to in-group members. 60 Higher value indicates stronger intergroup discrimination. The intergroup discrimination in the 61 likability rating was calculated by subtracting likability rating of out-group members from those to 62 in-group members. Higher value indicates stronger intergroup discrimination. Mixed-model 63 ANOVAs, n = 91 three-versus-three-person intergroup contest sessions. Effects and p-values in 64 bold indicate significant effects, * p < 0.05, ** p < 0.01, *** p < 0.001. 65

Channel	l	MNI coordinates		ВV	Brain Regions	
Channel	x	у	Z	SD	DA	Dram Regions
rDLPFC						
2	55	38	18	7.51	BA45	Inferior Frontal Gyrus
5	47	54	12	7.40	BA46	Dorsolateral prefrontal cortex
6	49	37	34	7.41	BA45	Middle Frontal Gyrus
8	40	53	28	6.81	BA46	Dorsolateral Prefrontal Cortex
11	27	65	22	6.78	BA10	Dorsolateral Prefrontal Cortex
12	29	48	43	6.77	BA9	Dorsolateral Prefrontal Cortex
14	18	60	36	6.23	BA9	Dorsolateral Prefrontal Cortex
rTPJ						
1	59	-51	48	11.40	BA40	Inferior Parietal Lobe
3	55	-68	35	11.95	BA39	Temporal Parietal Junction
4	67	-43	35	11.38	BA40	Supramarginal gyrus
7	64	-58	20	11.96	BA22	Superior Temporal Gyrus
9	57	-73	6	12.18	BA37	Middle Temporal Gyrus
10	69	-48	4	11.51	BA22	Middle Temporal Gyrus
13	62	-62	-10	13.65	BA37	Inferior Temporal Gyrus

66 Supplementary Table 4 | The anatomical position for each channel.

67

Note: To further confirm the anatomical position of the optode probe sets, the high-resolution 68 69 T1-weighted structural images from 6 participants (4 males, Mean \pm SD = 22.5 \pm 2.26 years) were acquired using a 3-T Siemens Trio scanner at the MRI Research Centre, Beijing Normal 70 University. For each participant, we normalized the structural image in SPM8 and then obtained 71 the MNI coordinates of 14 channels through NIRS-SPM toolbox. Across participants, we 72 73 calculated the mean MNI coordinates and standard deviation for each channel¹. The anatomical coordinates of each optode were shown in the Table and further confirmed the anatomical 74 localization of right rTPJ and rDLPFC. 75

76

77 *References*:

 Okamoto. M. et al. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. *Neuroimage* 21, 99-111 (2004). 81 Supplementary Table 5 | Full statistical reports of the within-group neural synchronization

82 (GNS).

Channel	F	р	η^2	FDR- corrected <i>p</i>
rDLPFC				
2	0.005	0.942	6.34×10 ⁻⁵	0.942
5	0.613	0.436	0.007	0.610
6	0.067	0.796	0.001	0.857
8	10.762	0.002**	0.114	0.011*
11	8.868	0.004**	0.095	0.018*
12	0.225	0.637	0.003	0.810
14	4.843	0.031*	0.055	0.071
rTPJ				
1	0.675	0.414	0.008	0.610
3	5.132	0.026*	0.058	0.071
4	6.837	0.011*	0.075	0.037*
7	3.358	0.070	0.038	0.141
9	2.347	0.129	0.027	0.226
10	0.130	0.719	0.002	0.839
13	11.579	1.02×10 ⁻³ **	0.121	0.011*

a, Results of Bonding × Role interaction on GNS (n = 86 sessions intergroup contest sessions)

84

b, Descriptive statistics for the GNS in each condition for the survived channels (n = 86
 sessions)

Channal	Indiaaa	No-bonding c	ontrol $(n = 43)$	In-group bon	In-group bonding $(n = 43)$		
Chaimer	maices	Attacker	Defender	Attacker	Defender		
rDLPFC							
0	Mean \pm SE	0.346 ± 0.003	0.359 ± 0.003	0.355 ± 0.003	0.348 ± 0.003		
0	95% CI	0.340 - 0.352	0.352 - 0.366	0.348 - 0.362	0.343 - 0.353		
11	Mean \pm SE	0.348 ± 0.003	0.358 ± 0.003	0.362 ± 0.003	0.353 ± 0.003		

	95% CI	0.342 - 0.354	0.351 - 0.364	0.356- 0.368	0.346 - 0.359
rTPJ					
4	Mean \pm SE	0.339 ± 0.002	0.349 ± 0.003	0.347 ± 0.003	0.342 ± 0.003
	95% CI	0.334 - 0.344	0.344 - 0.354	0.340 - 0.354	0.336 - 0.349
13	Mean \pm SE	0.336 ± 0.003	0.350 ± 0.003	0.346 ± 0.003	0.339 ± 0.003
15	95% CI	0.330 - 0.342	0.345 - 0.356	0.340 - 0.352	0.333 - 0.344

c, The Role effect under no-bonding control (n = 43 sessions) and in-group bonding (n = 43 sessions) conditions, respectively

Channel	Effect	t	р	Cohen's d
rDLPFC				
8	Control (defender vs. attacker)	3.106	0.003**	0.474
0	Bonding (defender vs. attacker)	-1.586	0.120	-0.242
11	Control (defender vs. attacker)	2.060	0.046*	0.314
	Bonding (defender vs. attacker)	-2.160	0.037*	-0.329
rTPJ				
4	Control (defender vs. attacker)	2.622	0.012*	0.400
4	Bonding (defender vs. attacker)	-1.143	0.259	-0.174
13	Control (defender vs. attacker)	3.141	0.003**	0.479
15	Bonding (defender vs. attacker)	-1.657	0.105	-0.253

d, The Bonding effect for attacker (n = 86 3-person groups) and defender (n = 86 3-person groups), respectively

Channel	Effect	t	р	Cohen's d
rDLPFC				
o A	Attacker (bonding vs. control)	1.983	0.051	0.428
0	Defender (bonding vs. control)	-2.529	0.013*	-0.545

11	Attacker (bonding vs. control)	3.448	8.86×10 ⁻⁴ ***	0.744
	Defender (bonding vs. control)	-1.100	0.274	-0.237
rTPJ				
4	Attacker (bonding vs. control)	1.866	0.066	0.402
-	Defender (bonding vs. control)	-1.737	0.086	-0.375
13	Attacker (bonding vs. control)	2.212	0.030*	0.477
15	Defender (bonding vs. control)	-3.112	0.003**	-0.671

91

Note: **a**, Mixed-model ANOVAs, n = 86 three-versus-three-person intergroup contest sessions, FDR-corrected *p*: *p*-value corrected for the interaction effect of 14 channels. Effects and *p*-values in bold indicate effects survived FDR correction. **c**, Two-tailed paired-samples *t-tests*, 43 three-person attacker groups and 43 three-person defender groups; **d**, Two-tailed independent samples *t-tests*, 43 three-person attacker (defender) groups under in-group bonding and 43 three-person attacker (defender) groups under no-bonding control. * p < 0.05, ** p < 0.01, *** p <0.001. 99 Supplementary Table 6 | The Bonding × Role interaction on within-group neural

synchronization when including within-group decision similarity in the analysis (n = 86intergroup contest sessions).

Channel	F	р	η2	FDR-corrected p
rDLPFC				
2	0.027	0.869	3.32×10 ⁻⁴	0.869
5	0.439	0.510	0.005	0.785
6	0.043	0.836	0.001	0.869
8	11.165	1.26×10 ⁻³ **	0.120	9.52×10 ⁻³ **
11	8.769	0.004**	0.097	0.019*
12	0.174	0.678	0.002	0.863
14	4.159	0.045*	0.048	0.110
rTPJ				
1	0.340	0.561	0.004	0.785
3	4.080	0.047*	0.047	0.110
4	8.094	0.006**	0.090	0.021*
7	3.260	0.075	0.038	0.150
9	2.239	0.138	0.027	0.242
10	0.077	0.781	0.001	0.869
13	11.006	1.36×10 ⁻³ **	0.118	9.52×10 ⁻³ **

102

103 Note: Within-group decision similarity was calculated as the contribution difference of each pair

of the 3-person group for each round [i.e., $(|x_1 - x_2| + |x_2 - x_3| + |x_1 - x_3|)$ for attacker group; $(|y_1 - y_2|$

105 $+ |y_2 - y_3| + |y_1 - y_3|$) for defender group]. Mixed model ANCOVAs with within-group decision

similarity as a covariate, n = 86 three-versus-three-person intergroup contest sessions; * p < 0.05,

107 ** p < 0.01; FDR-corrected p: p-value corrected for the interaction effect of 14 channels.

108 Channels and *p*-values in bold indicate effects survived FDR correction.

109

110 Supplementary Table 7 | The correlation between within-group neural synchronization and

111 group contribution.

112

Role	Channel	r	р	FDR-corrected <i>p</i>
	8	0.375	3.70×10 ⁻⁴ ***	0.002**
Attacker	11	0.188	0.083	0.166
(<i>n</i> = 86)	4	-0.010	0.930	0.930
	13	0.155	0.153	0.204
	8	-0.226	0.036*	0.062
Defender	11	-0.242	0.025*	0.062
(<i>n</i> = 86)	4	-0.216	0.046*	0.062
	13	-0.183	0.091	0.091

113

114 Note: Pearson's correlation coefficient analysis for 86 three-person attacker groups and 86

three-person defender groups, respectively. * p < 0.05, ** p < 0.01, *** p < 0.01; FDR-corrected

p: *p*-value corrected for the prediction strength of the 4 channels, respectively for attacker and

117 defender groups. Channel and *p*-values in bold indicate effects survived FDR correction.

118

119 Supplementary Table 8 | Full statistical reports for the group-averaged functional

120 connectivity (GFC) of rDLPFC-rTPJ (n = 86 intergroup contest sessions).

Indices	No-bonding co	ontrol $(n = 43)$	In-group bonding $(n = 43)$		
marces	Attacker	Defender	Attacker	Defender	
Mean \pm SE	0.531 ± 0.007	0.548 ± 0.007	0.568 ± 0.007	0.558 ± 0.008	
95% CI	0.518 - 0.545	0.533 - 0.563	0.553 - 0.582	0.542 - 0.575	

121 a, Descriptive statistics for grand mean GFC of rDLPFC-rTPJ

b, Result of Bonding × Role mixed-model ANOVA on the grand mean GFC (*n* = 86 sessions)

Effect	F	р	η^2
Bonding	9.035	0.003**	0.097
Role	0.273	0.603	0.003
Bonding \times Role	3.349	0.071	0.038

123 c, The Bonding effect on the channel-pair-wise GFC of rDLPFC-rTPJ (*n* = 86 sessions)

Channel pairs	F	n	n^2	FDR-corrected <i>n</i>
(rDLPFC-rTPJ)		Γ	1	
CH2-CH1	0.111	0.740	0.001	0.756
CH2-CH3	0.329	0.568	0.004	0.605
CH2-CH4	2.629	0.109	0.030	0.161
CH2-CH7	6.405	0.013*	0.071	0.043*
СН2-СН9	6.122	0.015*	0.068	0.044*
CH2-CH10	9.643	0.003**	0.103	0.017*
CH2-CH13	5.203	0.025*	0.058	0.058
CH5-CH1	1.678	0.199	0.020	0.270
CH5-CH3	3.591	0.062	0.041	0.097
CH5-CH4	3.689	0.058	0.042	0.095
СН5-СН7	10.285	0.002**	0.109	0.017*
СН5-СН9	11.315	1.16×10 ⁻³ **	0.119	0.017*
CH5-CH10	4.367	0.040*	0.049	0.078
CH5-CH13	9.525	0.003**	0.102	0.017*
CH6-CH1	0.015	0.902	1.83×10 ⁻⁴	0.902

СН6-СН3	0.707	0.403	0.008	0.439
CH6-CH4	3.228	0.076	0.037	0.116
СН6-СН7	7.125	0.009**	0.078	0.032*
СН6-СН9	8.365	0.005**	0.091	0.022*
СН6-СН10	6.281	0.014*	0.070	0.043*
СН6-СН13	8.689	0.004**	0.094	0.020*
CH8-CH1	0.145	0.704	0.002	0.734
CH8-CH3	1.618	0.207	0.019	0.270
CH8-CH4	1.200	0.276	0.014	0.323
CH8-CH7	4.111	0.046*	0.047	0.086
СН8-СН9	9.306	0.003**	0.100	0.017*
CH8-CH10	2.426	0.123	0.028	0.177
CH8-CH13	5.409	0.022*	0.060	0.058
CH11-CH1	0.764	0.385	0.009	0.428
CH11-CH3	3.745	0.056	0.043	0.095
CH11-CH4	1.341	0.250	0.016	0.303
CH11-CH7	5.194	0.025*	0.058	0.058
СН11-СН9	14.842	2.28×10 ⁻⁴ ***	0.150	0.011*
CH11-CH10	3.931	0.051	0.045	0.091
CH11-CH13	9.939	0.002**	0.106	0.017*
CH12-CH1	1.360	0.247	0.016	0.303
CH12-CH3	1.599	0.210	0.019	0.270
CH12-CH4	1.019	0.316	0.012	0.360
CH12-CH7	5.147	0.026*	0.058	0.058
СН12-СН9	8.146	0.005**	0.088	0.022*
CH12-CH10	4.952	0.029*	0.056	0.061
СН12-СН13	5.803	0.018*	0.065	0.050*
CH14-CH1	1.321	0.254	0.015	0.303
CH14-CH3	3.890	0.052	0.044	0.091
CH14-CH4	1.610	0.208	0.019	0.270
CH14-CH7	10.016	0.002**	0.107	0.017*
СН14-СН9	11.158	1.25×10 ⁻³ **	0.117	0.017*
CH14-CH10	4.770	0.032*	0.054	0.065
CH14-CH13	7.300	0.008**	0.080	0.031*

- 125 Note: The grand mean GFC of rDLPFC-rTPJ was indexed by the averaged 49 coherence value of
- all channel pairings between the right rDLPFC (i.e. 7 channels within rDLPFC) and rTPJ (i.e. 7
- 127 channels within rTPJ) within 3-person group¹; The 49 channel-pair-wise GFC were indexed by
- 128 the averaged coherence value from each rDLPFC-rTPJ channel pairings within 3-person group.
- 129 FDR correction in Table **c** was applied for the main effect of Bonding in all 49 channel pairs;
- 130 Mixed-model ANOVAs, n = 86 three-versus-three-person intergroup contest sessions;
- 131 Significance value in bold survived FDR correction. * p < 0.05, ** p < 0.01, *** p < 0.001.
- 132 References:
- 133 1. Zhang, L. et al. Studying hemispheric lateralization during a Stroop task through near-infrared
- 134 spectroscopy-based connectivity. J. Biomed. Opt. 19, 057012 (2014).

135 Supplementary Table 9 | Results of Within-group Neural Synchronization after controlling

136 **for global mean (***n* **= 86 intergroup contest sessions).**

Channel	F	р	η^2	FDR- corrected <i>p</i>
rDLPFC				
2	0.090	0.764	0.001	0.895
5	1.342	0.250	0.016	0.389
6	0.483	0.489	0.006	0.685
8	9.522	0.003**	0.103	0.022*
11	9.262	0.003**	0.100	0.022*
12	0.046	0.831	0.001	0.895
14	4.333	0.040*	0.050	0.081
rTPJ				
1	0.067	0.797	0.001	0.895
3	5.646	0.020*	0.064	0.069
4	5.057	0.027*	0.057	0.076
7	4.577	0.35*	0.052	0.081
9	2.561	0.113	0.030	0.198
10	0.006	0.939	7.12×10 ⁻⁵	0.939
13	6.669	0.012*	0.074	0.054

137 a, The Bonding × Role interaction on GNS after controlling for global mean (*n* = 86 sessions)

138 b, Correlation between within-group neural synchronization and group contributions

Role	Channel	r	р	FDR-corrected <i>p</i>
Attacker	8	0.388	2.40×10 ⁻⁴ ***	4.80×10 ⁻⁴ ***
(<i>n</i> =86)	11	0.222	0.041	0.041*
Defender	8	-0.253	0.020**	0.040*
(<i>n</i> =86)	11	-0.205	0.060	0.060

139 Note: **a**, Mixed-model ANCOVAs, n = 86 three-versus-three-person intergroup contest sessions,

140 with GNS global mean as a covariate. FDR-corrected *p*: *p*-value corrected for the interaction

141 effect of 14 channels. **b**, Pearson's correlation analysis for 86 attacker groups and 86 defender

142 groups, respectively. FDR-corrected p: p-value corrected for 2 channels showing Bonding × Role

interaction. *p*-values in bold indicate effects survived FDR correction; * p < 0.05; ** p < 0.01; ***

144 p < 0.001;

145 Supplementary Table 10 | Gender effect on the within-group neural synchronization (a),

146 within-group averaged neural activity (b), and group-level functional connectivity (c).

147 a, Gender effect on the within-group neural synchronization (*n* = 86 integroup contest
 148 sessions)

Channel	Effect	F	р	η^2	FDR-corrected p
rDLPFC					
	Gender	0.003	0.953	4.19×10 ⁻⁵	0.953
2	Gender \times Bonding	0.782	0.379	0.009	0.666
2	Gender \times Role	0.043	0.837	0.001	0.905
	$Gender \times Bonding \times Role$	1.222	0.272	0.015	0.762
	Gender	3.513	0.064	0.041	0.138
5	Gender \times Bonding	1.72×10 ⁻⁶	0.999	2.10×10 ⁻⁸	0.999
5	Gender × Role	0.014	0.905	1.75×10-4	0.905
	Gender \times Bonding \times Role	3.376	0.070	0.040	0.490
	Gender	11.085	1.31×10 ⁻³ **	0.119	0.018*
6	Gender \times Bonding	0.001	0.980	8.04×10 ⁻⁶	0.999
0	Gender × Role	0.125	0.724	0.002	0.905
	$Gender \times Bonding \times Role$	0.062	0.804	0.001	0.939
	Gender	8.689	0.004**	0.096	0.029*
8	Gender × Bonding	0.287	0.593	0.003	0.692
0	Gender × Role	0.017	0.896	2.10×10 ⁻⁴	0.905
	Gender \times Bonding \times Role	0.447	0.506	0.005	0.939
	Gender	5.385	0.023*	0.062	0.080
11	Gender × Bonding	1.165	0.284	0.014	0.666
11	Gender \times Role	0.028	0.868	3.41×10-4	0.905
	$Gender \times Bonding \times Role$	4.601	0.035*	0.053	0.490

	Gender	1 633	0 205	0 020	0 341
	Conder × Ponding	1 722	0.102	0.021	0.666
12		1.725	0.195	0.021	0.000
	Gender × Role	2.405	0.125	0.028	0.546
	Gender × Bonding × Role	0.049	0.825	0.001	0.939
	Gender	0.241	0.625	0.003	0.729
14	Gender \times Bonding	0.824	0.367	0.010	0.666
14	Gender × Role	2.054	0.156	0.024	0.546
	Gender \times Bonding \times Role	1.376	0.244	0.016	0.762
rTPJ					
	Gender	0.929	0.338	0.011	0.473
	Gender × Bonding	0.489	0.487	0.006	0.666
1	Gender × Role	4.174	0.044*	0.048	0.546
	Gender × Bonding × Role	0.117	0.734	0.001	0.939
	Gender	0.547	0.462	0.007	0.587
	Gender × Bonding	1.607	0.209	0.019	0.666
3	Gender × Role	0.595	0.443	0.007	0.905
	Gender × Bonding × Role	0.129	0.720	0.002	0.939
	Gender	3.390	0.069	0.040	0.138
	Gender × Bonding	0.603	0.440	0.007	0.666
4	Gender × Role	3.058	0.084	0.036	0.546
	Gender × Bonding × Role	0.041	0.839	0.001	0.939
	Gender	0.099	0.754	0.001	0.812
	Gender × Bonding	0 787	0 378	0.010	0 666
7	Gender × Role	0.224	0.638	0.003	0.905
		0.02(0.050	2.17×10^{-4}	0.000
	Gender × Bonding × Kole	0.020	0.872	3.1/×10 ⁺	0.939

	Gender	1.534	0.219	0.018	0.341
0	Gender \times Bonding	0.411	0.523	0.005	0.666
2	Gender × Role	0.039	0.843	4.81×10 ⁻⁴	0.905
	Gender \times Bonding \times Role	0.001	0.970	1.76×10 ⁻⁵	0.970
	Gender	4.732	0.032*	0.055	0.091
10	Gender × Bonding	1.568	0.214	0.019	0.666
10	Gender × Role	0.029	0.865	3.52×10 ⁻⁴	0.905
	Gender \times Bonding \times Role	0.656	0.420	0.008	0.939
	Gender	7.142	0.009**	0.080	0.042*
13	Gender \times Bonding	0.442	0.508	0.005	0.666
	Gender × Role	1.685	0.198	0.020	0.554
	Gender \times Bonding \times Role	1.677	0.199	0.020	0.762

149 **b**, The Gender effect on the within-group neural activity (*n* = 86 sessions)

Effect	F	р	η^2
Gender	2.815	0.097	0.033

c, The Gender effect on the within-group functional connectivity of rDLPFC-rTPJ (n = 86 sessions).

Channel pairs				
(rDLPFC-rTPJ)	F	р	η^2	FDR-corrected p
Grand mean	1.169	0.283	0.014	-
CH2-CH7	0.518	0.474	0.006	0.790
	0 177	0 (75	0.002	0.707
СН2-СН9	0.1//	0.6/5	0.002	0./9/
CH2-CH10	2.063	0.155	0.025	0.612
CH5-CH7	8.835	0.004**	0.097	0.070

СН5-СН9	3.114	0.081	0.037	0.488
CH5-CH13	0.405	0.526	0.005	0.790
CH6-CH7	3.336	0.071	0.039	0.488
CH6-CH9	1.918	0.170	0.023	0.612
CH6-CH10	0.818	0.368	0.010	0.790
CH6-CH13	0.075	0.785	0.001	0.831
СН8-СН9	1.163	0.284	0.014	0.730
CH11-CH9	0.238	0.627	0.003	0.797
CH11-CH13	0.020	0.889	2.41×10 ⁻⁴	0.889
CH12-CH9	0.268	0.607	0.003	0.797
CH12-CH13	1.401	0.240	0.017	0.720
CH14-CH7	0.441	0.509	0.005	0.790
CH14-CH9	0.702	0.405	0.008	0.790
CH14-CH13	0.141	0.708	0.002	0.797

152 Note: **a-c**, Mixed-model ANOVAs, n = 86 three-versus-three-person intergroup contest sessions; **a**,

153 FDR-corrected *p*: *p*-value corrected for the main effect of Gender and Gender-related interaction

154 effects on GNS in 14 channels. Effects and *p*-values in bold indicate effects survived FDR

155 correction; c. FDR-corrected *p*: *p*-value corrected for the main effect of Gender on rDLPFC-rTPJ

156 connectivity in at 18 channel pairs where we showed significant Bonding effect on rDLPFC-rTPJ

157 connectivity; * p < 0.05, ** p < 0.01.

Channel pairs	<u> </u>		2	FDR-correc
(rDLPFC-rTPJ)	F	р	η^2	ted p
CH2-CH1	0.405	0.526	0.005	0.586
CH2-CH3	0.043	0.837	0.001	0.873
CH2-CH4	0.028	0.867	3.37×10 ⁻⁴	0.882
CH2-CH7	0.022	0.882	2.62×10 ⁻⁴	0.882
СН2-СН9	0.198	0.657	0.002	0.716
CH2-CH10	2.003	0.161	0.023	0.239
CH2-CH13	1.102	0.297	0.013	0.364
CH5-CH1	0.628	0.430	0.007	0.490
СН5-СН3	0.731	0.395	0.009	0.461
CH5-CH4	6.367	0.014*	0.070	0.073
СН5-СН7	9.126	0.003**	0.098	0.048*
СН5-СН9	3.853	0.053	0.044	0.106
CH5-CH10	7.699	0.007 **	0.084	0.067
CH5-CH13	3.204	0.077	0.037	0.135
CH6-CH1	2.553	0.114	0.030	0.180
CH6-CH3	1.768	0.187	0.021	0.268
CH6-CH4	1.665	0.201	0.019	0.268
CH6-CH7	3.743	0.056	0.043	0.106
СН6-СН9	6.270	0.014*	0.069	0.073
CH6-CH10	1.695	0.196	0.020	0.269
CH6-CH13	3.519	0.064	0.040	0.116
CH8-CH1	2.796	0.098	0.032	0.161
CH8-CH3	4.030	0.048*	0.046	0.106
CH8-CH4	4.643	0.034*	0.052	0.106
CH8-CH7	4.508	0.037*	0.051	0.106
CH8-CH9	6.959	9.93×10 ⁻³ **	0.077	0.073
CH8-CH10	1.648	0.203	0.019	0.268
CH8-CH13	4.129	0.045*	0.047	0.106
CH11-CH1	0.934	0.337	0.011	0.402
CH11-CH3	3.797	0.055	0.043	0.106

Supplementary Table 11 | Full statistical reports for the group-level functional connectivity
 (GFC) of rDLPFC-rTPJ (n = 86 intergroup contest sessions).

CH11-CH4	4.123	0.045*	0.047	0.106
CH11-CH7	5.453	0.022*	0.061	0.090
СН11-СН9	8.952	0.004**	0.096	0.048*
CH11-CH10	1.325	0.253	0.016	0.326
CH11-CH13	6.852	0.011*	0.075	0.073
CH12-CH1	4.039	0.048*	0.046	0.106
CH12-CH3	2.145	0.147	0.025	0.225
CH12-CH4	3.783	0.055	0.043	0.106
CH12-CH7	3.030	0.085	0.035	0.144
СН12-СН9	8.783	0.004**	0.095	0.048*
CH12-CH10	0.098	0.755	0.001	0.804
CH12-CH13	3.936	0.051	0.045	0.106
CH14-CH1	3.764	0.056	0.043	0.106
CH14-CH3	5.734	0.019*	0.064	0.084
CH14-CH4	6.181	0.015*	0.069	0.073
CH14-CH7	4.341	0.040*	0.049	0.106
CH14-CH9	11.320	1.16×10 ⁻³ **	0.119	0.048*
CH14-CH10	1.167	0.283	0.014	0.356
CH14-CH13	3.786	0.055	0.043	0.106

160

161 Note: We first averaged the denoised Oxy-Hb neural activity in each channel across 3 participants

162 of each real or pseudo group. We then performed coherence analyses between each of the 7

163 channels in the rDLPFC with each of the 7 channels in the rTPJ (i.e., 49 channel pairs) to index

164 channel-pairwise group-level functional connectivity (GFC) of rDLPFC–rTPJ and submitted the

165 channel-pairwise GFC to Role-by-Bonding ANOVAs. Mixed-model ANOVAs, n = 86

166 three-versus-three-person intergroup contest sessions; * p < 0.05, ** p < 0.01; FDR-corrected p:

167 *p*-value corrected for the main effect of Bonding in all 49 channel pairs. Channel pairs and

168 *p*-values in bold indicate effects survived FDR correction.

169